

D0 Measurement of the Inclusive Jet Cross Section

Nirmalya Parua (for the D0 Collaboration) State University of New York Stony Brook

PANIC 05 Santa Fe, NM, October 24-28, 2005

Motivation

Tevatron and D0 Detector

Results

Summary

Motivation

- ➤ Inclusive jets and dijets cross-sections are directly sensitive to the strong coupling constant and parton density functions (PDFs)
- ➤ Any deviation from the theoretical prediction could be a signal for new physics

Cross section 2 times larger compared to Run I for jets with $p_{\scriptscriptstyle T}~>400~\text{GeV}$

Higher statistics will improve knowledge of proton structure at large x and searches for physics beyond the standard model (e.g. search for compositeness, W', Z' etc...) will be very exciting.

Inclusive jet p_T spectrum

The Run II Tevatron

Increased center of mass energy 1.8 TeV → 1.96 TeV

1 fb⁻¹ of luminosity recorded so far

Increased luminosity, 378 pb⁻¹ luminosity is used for the analysis Bunch Crossing time 3.5 μ sec -> 396 ns

Overview of DØ Detector

- **▶**2 Tesla solenoid magnetic field for central tracking system to facilitate charge and momentum measurement.
- >Silicon and fiber tracker detector.
- >Add scintillator detector in muon system for faster trigger
- > Pre-shower detectors.
- **▶**Pipelined 3 Level trigger

Calorimeter Overview

- Stable, uniform response, rad. hard
- LAr purity important (impurity < 0.5 ppm)
- **Uranium absorber (Cu or Steel for coarse hadronic)**
- Uniform, hermetic with full coverage
 - $|\eta| < 4.2 \ (\theta \approx 2^{\circ}), \ \lambda_{int} > 7.2 \ (total)$
- **Fine Segmentation**
 - $\Delta \eta X \Delta \phi = 0.1 X 0.1$ (3rd EM layer 0.05 X 0.05)

Upgrade of Calorimeter Readout

trigger and the other for

precision readings

Oct 24-28, 2005

55k readout channels

Nirmalya Parua

Jet Algorithms

Cone Algorithm in Run I (1992-1995)

- Draw a cone of fixed size around a seed.
- Compute jet axis by E_T weighted mean and jet E_T by summing over E_T s.
- Draw new cone around the new jet axis and recalculate axis and new E_T
- Iterate until stable.
- Sensitive to soft radiation.

Improvements in Run II (2000 -)

- Use 4 vector scheme instead of E_T
- Add midpoints of jets as additional star seeds.
- Infrared safe

Jet energy Scale

Correction of the jet energy measured at the detector level to the jet energy at the particle level

$$E_{ptcl}^{jet} = \frac{E_{det}^{jet} - \mathcal{O}}{R_{jet} S}$$

Offset, 0:

Energy that is not associated with the hard interaction. Namely uranium noise, pile-up effect, multiple interaction etc.

Response, R_{iet}:

Calorimeter energy response to jets, typically <1

Measured by attributing energy imbalance in γ +jet events.

Showering fraction S:

Fraction of the jet energy that showered inside the cone. Depends on cone size.

Et=24 GeV

Jet triggers and data selection

Data collected during Apr 2002 and Aug 2004 is used.

Total luminosity is 378 pb⁻¹ and sqrt s = 1.96 TeV

Triggers

Level 1:

- >Triggering on Calorimeter towers.
- > Fast trigger readout
- >multi tower trigger

Level 2:

- **➤** Software running on special hardware
- >3 X 3 or 5X5 square jets

Level 3:

Runs simple and fast jet algorithm on the precision readout

Inclusive jet cross section

Good agreement with QCD for 8 order of magnitude.

Dominant source of uncertainty is JES

Comparison with NLO QCD

Dijet Cross Section

- ➤ NLO QCD is in good agreement with Data
- \succ Theoretical uncertainty at high p_T is dominated by knowledge of gluon density

Highest Pt event

jet 1	jet 2
$p_T = 616 \mathrm{GeV}$	$p_T = 557 \mathrm{GeV}$
y = -0.19	y = 0.25
$\phi = 0.65$	$\phi = 3.78$
$M_{jj}=1206\mathrm{GeV}$	

Run 178796 Event 67972991 Fri Feb 27 08:34:03 2004

Oct 24-28, 2005

- We have presented preliminary results on inclusive jets and dijets cross-section using data exceeding that of Run I.
 - Larger kinematic ranges are explored
 - With enhanced experimental uncertainty we hope to better understand gluon content at larger x
 - So far measurement is in good agreement with NLO QCD prediction

- Tevatron is delivering more data.
- •Huge progress is being made to improve Jet Energy Scale
- •More precise spectrum with enhanced kinematic reach is coming soon